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In this study we evaluate stress evolution and change in seismic hazard after the 2015 Gorkha earthquake
sequence. We take a methodology usually used in areas with well-established seismic monitoring and
apply it to an area with a sparse dataset and a limited time observation window. Our goal is to validate
this approach as a rapid response tool for seismic forecasting after large earthquakes. We propose a long-
term seismic forecasting model of the Main Himalayan Thrust using the historical earthquake catalogue
and regional paleo-seismicity. Through application of the rate-and-state friction model, we evaluate
short-term rate evolution after the Gorkha earthquake. The long elapsed time since the last megathrust
event and the mainshock coseismic stress increase on the Main Himalayan Thrust suggest high seismic
potential in the Lalitpur and Lamjung areas along the fault system. We also calculate the stress change
on optimally oriented planes in the region and model the regional seismicity rate using a smoothing ker-
nel method and seismicity since 1921. The location of the consequent earthquakes coincides with areas of
high background seismicity rate and areas where stress was enhanced by the Mw 7.8 mainshock and Mw

7.3 aftershock. We model the change of seismic rate over time and project a fast decrease, due to the
short aftershock duration assumption we use.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Mw 7.8 Gorkha, Nepal, earthquake initiated roughly 80 km
northeast of Kathmandu (Fig. 1a) on April 25th, 2015, and caused
heavy casualties and damages, especially in the Kathmandu and
Sindhupalchok areas. Slip models obtained from the Global Seis-
mographic Network (GSN) broadband data suggest that the rup-
ture propagated eastward from its epicentre along the Main
Himalayan Thrust (MHT), with rupture dimensions of 150 km
along strike by 100 km along dip (Avouac et al., 2015). The National
Earthquake Information System (NEIC) of the United States Geo-
logical Survey (USGS) reported more than 180 aftershocks within
one month of the mainshock. A large amount of aftershocks over-
lap in map view with the estimated mainshock rupture patch
(Fig. 1).

The gently north-dipping MHT is considered the basal detach-
ment of the Himalayan fold and thrust belt (Ni and Barazangi,
1984; Seeber and Armbruster, 1981). The 3 principal thrusts in this
orogenic system are, from north to south and older to younger, the
Main Central Thrust, the Main Boundary Thrust and the Main Fron-
tal Thrust (MFT) (Gansser, 1964) (inset of Fig. 1), which ramp-up
from the MHT. Over the Holocene the MFT has accommodated
almost all of the convergence between India and Asia that is taken
up across the Himalayas, �20 mm per year (Ader et al., 2012; Lavé
and Avouac, 2000), and is thought to be the only thrust system that
is currently active (Lavé and Avouac, 2000).

A question that emerged immediately after this earthquake was
how this event would impact the regional seismicity. The elevated
seismic activity after the Gorkha mainshock might further con-
tribute to damage buildings and infrastructure. For decades,
researchers have used well-located aftershocks from local seismic
networks, and high-resolution fault slip models to discuss the
change of regional seismicity, and ‘‘retro-forecast” the impact to
the subsequent events (Chan et al., 2010, 2012b). However, these
types of high-quality datasets are not available in many countries,
including Nepal. These data also require longer time to collect and
process after a major seismic event. Both of these factors limit their
use for rapid-response earthquake forecasting models in areas
where high-quality data are sparse.
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Interseismic coupling on the fault determined by Ader et al. (2012)
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Fig. 1. (a) Spatial distribution of the interseismic coupling along the MHT, slip patches of historical earthquakes on the megathrust (Bollinger et al., 2014; Mugnier et al.,
2013; Sapkota et al., 2013), and distribution of the 2015 sequence. The localities of the MFT investigated by Bollinger et al. (2014) are denoted with a white circle. The
magenta contour illustrates the coseismic slip patch of the Gorkha earthquake. The green, blue, cyan dashed contours are the possible rupture regions of the 1934, 1833, and
1255 earthquakes, respectively. (b) Seismicity rate change on the megathrust in the following 10 years after the 2015 Gorkha earthquake. The MHT geometry is defined by
Ader et al. (2012). The inset shows the location of the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT) in cyan, green, and red,
respectively, and the red stars show the locations of the 1988 Nepal, 2011 Sikkim and 2015 Gorkha earthquakes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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In this study we show that this method can be used as a rapid-
response tool by developing a forecasting model for both large and
moderate earthquakes using datasets that are quickly available after
the mainshock. Thus we will work with the seismic catalogue one
month after the earthquake. We would like to note that our calcula-
tions can be updated in the future when a better earthquake cata-
logue is available. In this study, we attempt to forecast the
probabilities of both megathrust-rupture events on the MHT and
subsequent seismicity near the Gorkha rupture area with respect to
Coulomb stress change (DCFS) imparted by the mainshock. We test
our results by comparing the DCFS model with the distribution of
the aftershocks that occurred within the first month after the main-
shock. By using information frompublished paleoseismological anal-
yses, as well as global and regional earthquake catalogues, we then
quantify temporal evolution of the seismicity rate through the appli-
cation of the rate-and-state friction model of Dieterich (1994).
2. Coulomb stress change and consequent earthquakes on the
Main Himalayan Thrust

The DCFS calculation followed the constant apparent friction
law (Harris, 1998), expressed as:

DCFS ¼ Dsþ l0Drn; ð1Þ

where Ds is the shear stress change along the slip direction, l0 is the
apparent friction coefficient and Drn is the normal stress change on
the assumed planes. Generally l0 values lie between 0.2 and 0.8. We
tested these l0 end members and concluded that the calculated
Coulomb stress changes in both cases were indistinguishable from
each other. We used l0 ¼ 0:2, a value inferred from the low devia-
toric stress suggested by previous studies (Bollinger et al., 2004;
Cattin and Avouac, 2000). We then computed the DCFS caused by
slip dislocation patches in a homogeneous half-space using the
COULOMB 3.3 code (Toda et al., 2011).

To calculate the coseismic DCFS, we implemented the slip dislo-
cation model from Avouac et al. (2015). This slip model, together
with other earlier coseismic slip models, such as the slip model
of the NEIC (http://earthquake.usgs.gov/earthquakes/eventpage/
us20002926#scientific_finitefault), shows that no coseismic slip
took place on the shallow part (depth < 8 km) of the MHT. This is
consistent with the interferometric synthetic aperture radar
images from the European Space Agency’s Copernicus Sentinel-
1A satellite analysed by the Advanced Rapid Imaging and Analysis
Center for Natural Hazards (http://aria.jpl.nasa.gov/node/43) and
from ALOS-2 data (Lindsey et al., 2015). We evaluated DCFS on
the MHT using the geometry defined by Ader et al. (2012), a plane
with a strike of 287� and a dip of 10�. This geometry is similar to
that defined by the focal mechanisms of the mainshock and large
aftershocks (Fig. 1b), which have strikes of 295–310� and dips of
7–11� (Global Centroid Moment Tensor, GCMT, and NEIC cata-
logues) (Ekström et al., 2012). The result can be seen in Fig. 2a.
The small discrepancy between the slip patch and the area of
coseismic stress drop is due to the difference between the receiver

http://earthquake.usgs.gov/earthquakes/eventpage/us20002926#scientific_finitefault),
http://earthquake.usgs.gov/earthquakes/eventpage/us20002926#scientific_finitefault),
http://aria.jpl.nasa.gov/node/43
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fault geometry used in our model (Ader et al., 2012) and that of the
slip patch modelled using teleseismic data (Avouac et al., 2015).

In addition to the DCFS from the Mw 7.8 mainshock, stress
changes due to major aftershocks can also control the behaviour
of the following earthquakes. Thus, we further evaluated the stress
change imparted by the May 12, 2015 Mw 7.3 aftershock using the
NEIC slip model (http://earthquake.usgs.gov/earthquakes/event-
page/us20002ejl#scientific_finitefault). Our model suggests that
the changes in the stress field that occurred due to this aftershock
are restricted to the northeast of the mainshock slip patch (Fig. 2b).
3. Possibility of megathrust event in the future

Paleoseismological and historical earthquake studies suggest
that the MHT produces megathrust earthquakes with fault rup-
tures at the surface (e.g., 1255 and 1934 earthquakes) (Sapkota
et al., 2013) every several hundred years, as well as other destruc-
tive events (e.g., 1833) that are likely blind and do not leave signif-
icant evidence in the geological record (Avouac, 2007). Based on
historical records, at least three megathrust events have struck
central Nepal in the past 750 years (i.e., in 1255, 1833, 1934)
(Fig. 1a) (Bollinger et al., 2014). The 1934 event, M � 8.2–8.4
(Chen and Molnar, 1977; Singh and Gupta, 1980), ruptured the
Dolakha area, east of Kathmandu (Fig. 1). The shaking records of
the 1833 earthquake (Bilham, 1995) suggest that this 19th century
event had a rupture area similar to that of the 2015 Gorkha earth-
quake. The rupture of the destructive 1255 earthquake is compara-
ble to or even longer than the 1934 earthquake, from Dolakha to
Lamjung area, though the rupture length for this earthquake is
not well constrained (Bollinger et al., 2014). These large earth-
quakes emphasize the importance of understanding the seismic
hazard in central Nepal from the MHT.

Bollinger et al. (2014) documented the rupture history of two
strands of the MFT in an area southeast of Kathmandu using a com-
bination of terrace elevation surveying, terrace dating and trench-
ing (Fig. 1a). A flight of 5–7 strath terraces, interpreted to be
tectonically uplifted, was studied. These terraces span a time of
3.6–4.5 kyrs. Based on their results Bollinger et al. (2014) suggest
that the average return periods of the great surface-breaking
Himalayan earthquakes (Mw P 8.0 events on the MHT such as
the 1255 and 1934 events) in the Dolakha area range between
750 ± 140 and 870 ± 350 years, depending on the interpretation
of the preserved sedimentary record. These recurrence intervals
assume a characteristic earthquake model. Even though studies
suggest that this model may not be applicable in all tectonic set-
tings (Goldfinger et al., 2012; Weldon et al., 2004), at present these
are the best estimates available for central Nepal. Based on this,
qualitatively, we can expect that the probability of surface-
rupturing megathrust event in Dolakha region might be low in
the coming near future, as the most recent rupture took place in
1934. In contrast, the shallow portion of MHT beneath both the Lal-
itpur and the Lamjung areas possibly has not ruptured since 1255,
suggesting a higher earthquake probability in the coming future.

To quantitatively evaluate the long-term seismicity rate of the
large megathrust earthquakes, we implemented the Brownian Pas-
sage Time (BPT) model (Ellsworth et al., 1999) to express the earth-
quake probability density function (PDF) as:

PDF ¼ l
2pa2t3

� �1=2

exp �ðt � lÞ2
2a2lt

 !
; ð2Þ

where l is the mean recurrence interval (taken from paleoseismo-
logical studies), t is the elapsed time since the last event and a is the
aperiodicity. We assumed that the aperiodicity is the ratio of stan-
dard deviation to mean recurrence interval. To further quantify the
earthquake probability, we follow the procedure of Erdik et al.
(2004) and assume:

Pðt;DtÞ ¼
R tþDt
t f ðtÞdtR1
t f ðtÞdt ; ð3Þ

where P(t, Dt) is the earthquake probability within the next Dt
years, assuming that no earthquake has occurred in the past t years;
f(t) is the seismicity density function, presented by the BPT model in
Eq. (2). Considering t as the elapsed time since the last MFT-
rupturing event (in 1255) on the Lalitpur and Lamjung area and
aperiodicity values between 0.3 and 0.7, the probability of a rupture
in the next decade (i.e. Dt = 10 years) is between 1.7% (recurrence
interval of 870 years; aperiodicity value of 0.7) and 4.1% (recurrence
interval of 750; aperiodicity value of 0.3). The probabilities become
larger when a longer period of time is considered. For example, the
calculated earthquake probabilities are between 8.4% and 19.3% in
the coming 50 years (i.e. Dt = 50 years).

Stress changes after a large earthquake alter seismicity beha-
viour in a short-term period, which can be illustrated by the
rate-and-state friction model (Dieterich, 1994). We will quantify
this seismicity change and evaluate its effect to better constrain
the probability of a megathrust earthquake. Based on the proce-
dure proposed by (Chan et al., 2010), the evolution of the seismic-
ity rate change DRðM; x; tÞ, considering DCFS by the n0th event
DCFSn (x) at the site of interest x as a function of magnitude, M,
and time, t, is presented as follows:

DRðM; x; tÞ ¼ 1
1

DRn�1ðM;xÞ exp
DCFSnðxÞ

Ar

� �
� 1

h i
exp � t�tn

tna

� �
þ 1

; ð4Þ

where DRn�1ðM; xÞ is the seismicity rate change promptly before the
n0th event based on the rate evolution by previous events (i.e.
DR0ðM; xÞ); Ar is a constitutive parameter of the model; tn is the
occurrence time of the n0th source event and tna is the aftershock
duration. The aftershock duration tna is related to Ar through

tna ¼ Ar
_s
; ð5Þ

where _s is the fault/regional stressing rate (Dieterich, 1994). To
obtain the regional aftershock duration, we examined the time ser-
ies of the 1988 Nepal (Mw 6.8) and 2011 Sikkim (Mw 6.9) sequences.

To model the temporal decay of seismicity rate, n(t), we consid-
ered the modified Omori’s Law of Utsu (1961), which can be
denoted as follows:

nðtÞ ¼ t
ðc þ tÞp ð6Þ

where k, c, and p are constants that represent the number of
observed earthquakes, the rate of decay and the delay of the decay,
respectively. In this study, we assumed c = 0, suggesting no time
delay for the decay. k- and p-values for each sequence were
obtained using a least square fit with the temporal distribution of
subsequent seismicity after the mainshock. We obtained aftershock
durations of 0.99 and 1.77 years for the 1988 Nepal and 2011 Sik-
kim sequences, respectively (Fig. 3a and b). Thus, we fix the after-
shock duration to 1 year for the application of the rate-and-state
friction model. Similar short aftershock periods have been observed
at other tectonically active regions with high fault slip rate, includ-
ing fault systems in California and Taiwan (e.g., Chan andWu, 2012;
Dieterich, 1994). To test this assumption, we modelled the temporal
distributions of the 2015 Gorkha sequence through the modified
Omori’s Law (Utsu, 1961) using the earthquake parameters
obtained from the NEIC catalogue (Fig. 3c). The result suggests the
aftershock period of this sequence is 2.08 year, close to our assump-
tion (1 year). The large deviation of the decay model in the Gorkha
case (Fig. 3c) can be attributed to the short observation period (one

http://earthquake.usgs.gov/earthquakes/eventpage/us20002ejl#scientific_finitefault
http://earthquake.usgs.gov/earthquakes/eventpage/us20002ejl#scientific_finitefault


a b

Fig. 2. The Coulomb stress change (DCFS) on the MHT imparted by (a) the M7.8 Gorkha earthquake, and (b) both the mainshock and the M7.3 aftershock. The magenta
contour illustrates the coseismic slip patch of the Gorkha earthquake. The blue dashed contour in (b) illustrates the rupture patch of the M7.3 aftershock. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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law of Utsu (1961). Seismicity rates drop back to background level in 0.99, 1.77 and 2.08 years, respectively. Mc denotes the magnitude of completeness available for each
earthquake, based on the lease-square regression result of each earthquake sequence.
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month after the mainshock) and sparse events due to the high mag-
nitude of completeness of the used catalogue (Mc 4.2).

Based on the observation of seasonal correlation between seis-
micity and stress rate, Bettinelli et al. (2008) suggested a small Ar
of <0.08 bars for Nepal. Based on this we assumed a fixed value of
0.05 bar for our calculations. The assumptions mentioned above
imply a stressing rate of 0.05 bar/year according to Eq. (5), consis-
tent with the stressing rate of 0–0.1 bar/year deduced from the
MHT coupling model in Ader et al. (2012). Using these parameters,
we implemented the rate-and-state friction model to evaluate seis-
micity rate change (Fig. 1b). The stress perturbation by the Gorkha
earthquake and its Mw 7.3 aftershock (Fig. 2) results in a seismicity
rate decrease in the rupture patches on the MHT whereas the rate
increases in the peripheral regions. Our estimation suggests that
the average seismicity rates on the MHT in the Lamjung, Lalitpur,
and Dolakha area could be elevated as much as 4.0, 4.8, and 4.8
times, respectively, in the following 10 years, compared to the rate
before the mainshock.

Using these new average seismicity rates we can re-calculate the
probabilities of a megathrust earthquake. To do this using Eq. (3),
we obtained the seismicity density function bymultiplying seismic-
ity rates from the BPTmodel (Eq. (2)) and the rate-and-state friction
model (Eq. (4)). Based on this, the probability of an earthquake
occurring on the MHT in the next decade is 24% and 11% for mean
recurrence intervals of 750 ± 140 and 870 ± 350 years, respectively.
These probabilities are considerably higher than the initially
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calculated ones (6.3% and 2.4%) highlighting the enhanced seismic
hazard of the region after the Gorkha earthquake.
4. Coseismic Coulomb stress change on optimally oriented
planes and consequent earthquakes in the region

In the previous sections, we have generated a model to forecast
the probability of the next megathrust events along the MHT.
Besides the MHT, other secondary faults may generate moderate-
to-large earthquakes that could result in disasters as well (e.g.,
the 1988 Mw 6.8 Nepal and 2011 Mw 6.9 Sikkim earthquakes).
These secondary faults may not have a similar fault geometry to
the MHT (e.g., de la Torre et al., 2007), thus, to assess the regional
earthquake potential of these structures requires a different model.

The aftershock distribution after the Gorkha earthquake was
asymmetric, with more aftershocks located to the east of the main-
shock rupture patch. This is consistent with dynamic stress trigger-
ing having some influence in their distribution, though we do not
have the strong motion data necessary to quantify this aspect.
Recent studies, however, have shown that static stress changes
are central in controlling the clustering of small earthquakes (e.g.,
Green et al., 2015) and thus,wewill focus on this factor in this study.
We modelled the coseismic DCFS on optimally oriented planes
(OOPs) (King et al., 1994), as the geological and the seismological
data do not provide adequate information to predetermine the ori-
entation of these secondary receiver faults near the rupture patch.

OOP determination requires knowledge of not only the DCFS of
an earthquake, but also regional stress orientation and deviatoric
stress. We used the GCMT mainshock focal mechanism (Fig. 1a)
to infer the regional stress orientation and assumed a low devia-
toric stress of 100 bars for the regional stress state based on the
stress estimation from Bollinger et al. (2004). Due to insignificant
coseismic stress change away from the rupture patch, the OOPs
outside the coseismic slip patch keep the mechanism imposed by
the regional stress (shallow thrust). In contrast, the orientations
of OOPs are diverse close to the rupture zone due to comparable
stress magnitudes of the regional stress and the coseismic DCFS
(inset in Fig. 4d).

We evaluated theDCFS resolved on the stress-defined OOPs. We
first evaluate the DCFS at depths of 10, 15 and 20 km, on a
2 km � 2 km grid map (Fig. 4a–c). The model shows that a signifi-
cant stress increase patch migrates toward to northeast with
depth, which corresponds to the dipping of the rupture patch. In
the vicinity of the rupture patch, however, the stress dropped dur-
ing the coseismic period. This model does not fully forecast the
aftershock distribution (blue1 circles in Fig. 4a–c) as some of them
are located in the stress shadow zone, however this observation
depends on adequate depth control for the aftershocks, which is
not available for the vast majority of them. The failure of this model
may also be due to uncertainty of the resolution of the finite rupture
model, e.g. aftershocks may take place on strong, unruptured small
patches too small to be resolved (Chan et al., 2012b). In order to
improve the forecasting quality, we followed the procedure of
Catalli and Chan (2012) and evaluated DCFS at different depths at
each calculation grid node and reported the maximum one (Fig. 4d).
The resulting map shows the maximum stress value for depths of
10–20 km at each node. This model shows significant stress increase
overlapping in map view with the slip patch, where a large amount
of aftershocks took place. The better forecasting ability for this
model can be attributed to minimization of the effect of hypocentral
depth uncertainties and of rupture geometry (Catalli and Chan,
2012).
1 For interpretation of colour in Fig. 4, the reader is referred to the web version of
this article.
To validate our results statistically, we compared DCFS models
with the spatial distribution of the aftershocks using the Molchan
diagram (Molchan, 1990, 1991), which was designed for evaluating
forecasting ability. We present the ‘‘fraction occupied by alarm” as
the proportion of the study area having a DCFS equal to or higher
than a threshold, defined as ‘‘alarm”. The ‘‘ratio of failure to pre-
dict” indicates the proportion of aftershocks that locate in a region
with a lower DCFS than the alarm. In other words, when data
points are distributed along the diagonal line, the distribution of
aftershocks is uniform and independent of the DCFS. A convexity
suggests that the majority of the aftershocks occurred within
regions with negative DCFS as compared to the entire area and a
concavity suggests that the majority of the aftershocks occurred
in an area with positive DCFS. Based on the results of the Molchan
diagram, the forecasting ability of the DCFS model using individual
target depths is marginal (green dots in Fig. 5a) since only 63% of
the aftershocks locate in stress increase zone (Fig. 4a–c). On the
contrary, the maximum DCFS model shows a convexity distribu-
tion in the diagram (red dots in Fig. 5a), which suggests that as
the maximum DCFS model has a larger area of stress increase
stress, aftershocks tend to occur in the region with highest stress
increase (Fig. 4d).

The agreement of positive stress changes on OOPs and the area
with dense aftershocks was also observed during the 1999 Chi–Chi
earthquake sequence in Taiwan. There it was shown that the focal
mechanisms of the modelled OOPs and the observed aftershocks
were similar (Chan et al., 2012a). We emphasize that our model
implies that most small subsequent earthquakes likely take place
on secondary faults above and below the MHT, rather than on
the MHT itself.

5. Seismicity rate forecasting model

In order to propose a seismicity-forecast model for the study
region, we calculated both background regional seismicity rate
and regional rate change resulting from the Gorkha earthquake.
Previous studies (e.g., Woo, 1996) have determined background
rate by summarizing seismic activity during the period with a
complete earthquake catalogue, described as follows:

kðM; xÞ ¼
XNM

i¼1

KðM; x� xiÞ
TM

; ð7Þ

where kðM; xÞ is the background rate at the site of interest, x, as a
function of magnitude, M; K(M, x � xi) represents a smoothing Ker-
nel as a function of magnitude and distance between the site of
interest, x, and the i0th earthquake, xi; TM represents the period of
a complete catalogue with a magnitude threshold; and NM repre-
sents the total number of earthquakes with magnitudes larger than
the threshold. We followed the same approach as Woo (1996), that
described the Kernel function K(M, x � xi) as:

KðM; x� xiÞ ¼ PL� 1
pH2ðMÞ 1þ x� xi

HðMÞ
� �2

 !�PL

; ð8Þ

where PL is a power law index with recommended values between
1.5 and 2.0, corresponding to a cubic or quadratic decay of seismic
activity with hypocentral distance (Molina et al., 2001). Previous
studies (Chan et al., 2010, 2012b) concluded that the difference of
the results is insignificant when PL is assumed to be in between
1.5 and 2. In this study, we assume PL = 2.0. H(M) is the bandwidth
function defined as the mean distance of nearest events as a func-
tion of magnitude, M, in a catalogue. The function H(M) can be rep-
resented as follows:

HðMÞ ¼ c � ed�M ð9Þ
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where c and d are constants that represent the seismicity rate and
rate decrease exponentially with magnitude, respectively, obtained
from a regression of an earthquake catalogue. This approach fore-
casts seismicity rate based on the averaged seismic activity during
the observation period and minimizes the factor of temporal
evolution.

To obtain a background rate, the model requires a complete
earthquake catalogue. We implemented the catalogue of Yadav
et al. (2009) and updated it to 2015 using the NEIC database.
Yadav et al. (2009) integrated earthquake location parameters
from the International Seismological Centre (ISC), the NEIC, the
GCMT Project, and the seismicity data compiled by Gupta et al.
(1986). The various magnitude scales are harmonized to moment
magnitude (Mw), with the magnitude of completeness (Mc) about
4.0 since 1987 (Yadav et al., 2009). Since we assume consequent
aftershocks as triggered by the mainshock DCFS, aftershocks were
excluded from the catalogue using the declustering approach
developed by Uhrhammer (1986). Considering the complete part
of the catalogue since 1987, we estimated the c- and d-values of
the bandwidth function to be 0.27 and 1.01, respectively. These
parameters provide the basis to generate the background seismic-
ity rate in the region (Fig. 6). Our seismicity rate map before the
2015 mainshock clearly indicates a high seismicity rate area at
the eastern edge of the Gorkha rupture patch that coincides with
the dense aftershock zone after the Gorkha earthquake. The other
seismicity rate peak located north of the Gyachung Kang (Fig. 6)
is possibly associated with the active north-trending normal faults
located in the southern Tibetan Plateau (e.g., Armijo et al., 1986;
Kapp et al., 2008). This patch, however, shows no increase in seis-
micity related to the mainshock. The absence of aftershocks at this
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patch supports our Coulomb stress modeling result that only minor
stress changes propagated far away from the coseismic slip patch
(Fig. 4d).

Fig. 7 shows our forecast of the temporal seismic rate evolution
in central Nepal after the Gorkha earthquake. Our forecast suggests
a significant rate increase around the mainshock slip patch that
correlates well with the aftershock distribution. Although the
aftershock rate may decay quickly after the mainshock, our model
suggest that the average seismicity rate within the first year post-
mainshock is still 2.5 times higher than the background rate
(Fig. 7a). Our model also shows that in a decade the average seis-
micity rate would be close to, but still 30% higher than, the back-
ground rate before the Gorkha earthquake (Fig. 7b). The rapid
rate decay is attributed to the assumption of short aftershock dura-
tion (one year), consistent with the temporal seismicity decay
behaviour after the 2015 Gorkha earthquake (Fig. 3c).

When we compare the aftershock occurrences to the temporal
and spatial distributions predicted by the modified Omori Law
and the rate-and-state friction model, respectively, we see that
174 out of the 175 (more than 99%) aftershocks were located in
the area with forecasted rate higher than 3.32 events per 10 years
per 100 � 100 km2 (Fig. 7), which corresponds to the highest 32-
percentile forecasted rate in our model. To validate the spatial dis-
tribution of our forecasting model we again use the Molchan dia-
gram (Fig. 5b). This plot shows the excellent correlation between
the earthquake distribution prediction and the actual locations.

To quantitatively evaluate the credibility of our forecast model
through time, we implemented the N-test (Eqs. (8a) and (8b) in
Zechar et al., 2010). This test is based on d1ðtÞ and d2ðtÞ; which rep-
resent the correlation between numbers of observed and fore-
casted events using a right-continuous Poisson cumulative
distribution function. A forecast will be accepted only if
d1ðtÞ < 1� aeff and d2ðtÞ > aeff ; where aeff represents the effective
significance value. We followed Zechar et al. (2010) and assumed
aeff ¼ 0:025. We evaluate d1ðtÞ and d2ðtÞ for the number of
MP 4.5 earthquakes in the first month after the Gorkha main-
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shock (Fig. 8). The test shows our model forecast the number of
events well in the first three days. Afterward, our model is less sat-
isfied due to over-prediction in this period (i.e. d1ðtÞ > 1� aeff and
d2ðtÞ < aeff ). The numbers of observed and forecasted events, again,
become comparable after occurrence of the Mw 7.3 aftershock. The
change of the N-test result over time suggests that our current
model does not perform perfectly in the daily-scaled forecast.
However, this model forecast quantitatively well in a monthly
scale, including the large aftershock and its secondary aftershocks.

The dissatisfaction of our daily forecast result is likely resulting
from the simplification of our proposed forecast model, as this
model is based on the Coulomb stress changes related to the Mw

7.8 mainshock and Mw 7.3 aftershock with constant background
stressing rate. We are aware of other factors that may control
behaviours of consequent earthquakes, e.g., stress change by after-
slip (Chan and Stein, 2009; Perfettini and Avouac, 2007). However,
implementation of these factors requires postseismic geodetic
observations, which does not fulfill the scope of this study, i.e.
proposing a forecasting model quickly after the mainshock.
6. Conclusions

In this study, we evaluated stress evolution following the 2015
Gorkha earthquake sequence and future seismic hazard potential
on both the megathrust and the surrounding area, using the data
available within one month after the mainshock. We showed that
the location of the consequent earthquakes coincides with areas
where stress on the optimally oriented planes was enhanced by
the Mw 7.8 mainshock and Mw 7.3 aftershock. We reviewed the
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historical catalogue and regional paleo-seismicity to propose long-
term forecasting for large earthquakes on the Main Himalayan
Thrust. Through application of the rate-and-state friction model,
we evaluated short-term rate evolution after the Gorkha earth-
quake. The long elapsed time since the last event and the coseismic
stress increase on the Main Himalayan Thrust suggest high seismic
potential in the Lalitpur and Lamjung segments of the fault. We
also modelled the regional seismicity rate using a smoothing ker-
nel method and seismicity since 1921. A high seismicity rate was
observed at the eastern edge of the mainshock rupture, which
coincides with an area with large amount of aftershocks. Study of
previous aftershock sequences leads us to assume a short after-
shock duration, 1 yr, which causes the subsequent seismicity rate
to descend dramatically over time in our forecast. We show that
this methodology, though commonly used for areas with long
monitoring histories, may be used as a rapid-response tool after
a large earthquake, which would allow quantifying the short and
long term seismic risk. The outcomes of this study determine key
parameters for subsequent seismic hazard assessment, a critical
component for the short and long term planning of the recovery
of the people and infrastructure affected by the Gorkha earthquake
sequence.
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